
Home Menu About Documentation Download License Support Purchase

Search

Small. Fast. Reliable.
Choose any three.

Appropriate Uses For SQLite
SQLite is not directly comparable to client/server SQL database engines such
as MySQL, Oracle,
PostgreSQL, or SQL Server since SQLite is trying to
solve a different problem.

Client/server SQL database engines strive to implement a shared repository
of enterprise data.
They emphasize scalability, concurrency, centralization,
and control.
SQLite strives to provide local
data storage for
individual applications and devices. SQLite emphasizes economy,
efficiency,
reliability, independence, and simplicity.

SQLite does not compete with client/server databases.
SQLite competes with fopen().

Situations Where SQLite Works Well

Embedded devices and the internet of things

Because an SQLite database requires no administration,
it works well in devices that must
operate without expert human support.
SQLite is a good fit for use in cellphones, set-top
boxes, televisions, game consoles,
cameras, watches, kitchen appliances, thermostats,
automobiles, machine tools, airplanes, remote sensors, drones, medical devices,
and robots:
the "internet of things".

Client/server database engines are designed to live inside a
lovingly-attended datacenter at
the core of the network.
SQLite works there too, but SQLite also thrives at the edge of the
network,
fending for itself while providing fast and
reliable data services to applications that
would otherwise
have dodgy connectivity.

Application file format

SQLite is often used as the on-disk file format
for desktop applications such as version
control systems,
financial analysis tools, media cataloging and editing suites, CAD
packages,
record keeping programs, and so forth. The traditional
File/Open operation calls
sqlite3_open() to attach to the database
file. Updates happen automatically as application
content is revised
so the File/Save menu option becomes superfluous. The File/Save_As
menu option can be implemented using the backup API.

There are many benefits to this approach, including improved
performance, reduced cost and
complexity, and
improved reliability. See technical notes
"aff_short.html" and
"appfileformat.html" and
"fasterthanfs.html" for more information.
This use case is closely
related to the
data transfer format and
data container use cases below.

Websites

https://sqlite.org/index.html
javascript:void(0)
https://sqlite.org/about.html
https://sqlite.org/docs.html
https://sqlite.org/download.html
https://sqlite.org/copyright.html
https://sqlite.org/support.html
https://sqlite.org/prosupport.html
javascript:void(0)
https://sqlite.org/index.html
http://man.he.net/man3/fopen
https://sqlite.org/backup.html
https://sqlite.org/aff_short.html
https://sqlite.org/appfileformat.html
https://sqlite.org/fasterthanfs.html


SQLite works great as the database engine for most low to
medium traffic websites (which is
to say, most websites).
The amount of web traffic that SQLite can handle depends
on how
heavily the website uses its database. Generally
speaking, any site that gets fewer than 100K
hits/day should work
fine with SQLite.
The 100K hits/day figure is a conservative estimate,
not a
hard upper bound.
SQLite has been demonstrated to work with 10 times that amount
of
traffic.

The SQLite website (https://www.sqlite.org/) uses SQLite itself,
of course, and as of this
writing (2015) it handles about 400K to 500K
HTTP requests per day, about 15-20% of which
are dynamic pages touching
the database. Dynamic content uses about 200 SQL statements
per webpage.
This setup runs on a single VM that shares a physical server with 23 others
and
yet still keeps the load average below 0.1 most of the time.

Data analysis

People who understand SQL can employ the sqlite3 command-line shell (or various third-
party
SQLite access programs) to analyze large
datasets. Raw data can be imported from
CSV files, then that
data can be sliced and diced to generate a myriad of summary
reports.
More complex analysis can be done using simple scripts written
in Tcl or Python (both of
which come with SQLite built-in) or in R or
other languages using readily available adaptors.
Possible uses include website log analysis, sports
statistics analysis, compilation of
programming metrics, and
analysis of experimental results. Many bioinformatics researchers
use SQLite in this way.

The same thing can be done with an enterprise client/server
database, of course. The
advantage of SQLite is
that it is easier to install and use and the resulting database is a single
file that can be written to a USB memory stick
or emailed to a colleague.

Cache for enterprise data

Many applications use SQLite as a cache of relevant content from
an enterprise RDBMS.
This
reduces latency, since most queries now occur against the local
cache and avoid a network
round-trip. It also reduces the load on the network and on the central database server. And in
many cases, it means that the client-side application can continue operating during
network
outages.

Server-side database

Systems designers
report success using SQLite as a data store on server applications
running in the datacenter, or in other words, using SQLite as the underlying
storage engine for
an application-specific database server.

With this pattern, the overall system is still client/server:
clients send requests to the server
and get back replies over the network.
But instead of sending generic SQL and getting back
raw table content, the client requests and server responses are high-level and application-
specific.
The server translates requests into multiple SQL queries, gathers the
results, does
post-processing, filtering, and analysis, then constructs
a high-level reply containing only the
essential information.

Developers report that SQLite is often faster than a client/server
SQL database engine in this
scenario.
Database requests are serialized by the server, so concurrency is not
an issue.
Concurrency is also improved by "database sharding":
using separate database files for
different subdomains. For
example, the server might have a separate SQLite database for
each
user, so that the server can handle hundreds or thousands of simultaneous
connections, but each SQLite database is only used by one connection.

https://www.sqlite.org/
https://sqlite.org/np1queryprob.html
https://sqlite.org/cli.html


Data transfer format

Because an SQLite database is a single compact file in a
well-defined cross-platform format,
it is often used
as a container for transferring content from one system to another.
The
sender gathers content into an SQLite database file, transfers
that one file to the receiver,
then the receiver uses SQL to extract
the content as needed.

An SQLite database facilitates data transfer between systems even
when the endpoints have
different word sizes and/or byte orders.
The data can be a complex mix of large binary blobs,
text, and small
numeric or boolean values. The data format can be easily extended
by adding
new tables and/or columns, without breaking legacy receivers.
The SQL query language
means that receivers are not required to parse
the entire transfer all at once, but can instead
query the
received content as needed. The data format is "transparent" in the
sense that it is
easily decoded for human viewing using a variety of universally available, open-source tools,
from multiple
vendors.

File archive and/or data container

The SQLite Archive idea shows how
SQLite can be used as a substitute for ZIP archives or
Tarballs.
An archive of files stored in SQLite is only very slightly larger, and
in some cases
actually smaller, than the equivalent ZIP archive.
And an SQLite archive features incremental
and atomic updating
and the ability to store much richer metadata.

Fossil version 2.5 and later offers
SQLite Archive files as a download format, in addition
to
traditional tarball and ZIP archive.
The sqlite3.exe command-line shell version 3.22.0 and
later will create,
list, or unpack an SQL archiving using the .archive command.

SQLite is a good solution for any situation that requires bundling
diverse content into a self-
contained and self-describing package for shipment across a network.
Content is encoded in
a well-defined, cross-platform, and stable file format.
The encoding is efficient, and receivers
can extract small subsets
of the content without having to read and parse the entire file.

SQL archives are useful as the distribution format for software
or content updates that are
broadcast to many clients. Variations
on this idea are used, for example, to transmit TV
programming guides
to set-top boxes and to send over-the-air updates to vehicle navigation
systems.

Replacement for ad hoc disk files

Many programs use fopen(),
fread(), and fwrite() to create and
manage files of data in home-
grown formats. SQLite works particularly well as a
replacement for these ad hoc data files.
Contrary to intuition, SQLite can be faster than the filesystem
for reading and writing content
to disk.

Internal or temporary databases

For programs that have a lot of data that must be sifted and sorted
in diverse ways, it is often
easier and quicker to load the data into
an in-memory SQLite database and use queries with
joins and ORDER BY
clauses to extract the data in the form and order needed rather than
to
try to code the same operations manually.
Using an SQL database internally in this way also
gives the program
greater flexibility since new columns and indices can be added without
having to recode every query.

Stand-in for an enterprise database during demos or testing

Client applications typically use a generic database interface that allows
connections to
various SQL database engines. It makes good sense to include SQLite in the mix of

https://sqlite.org/fileformat2.html
https://sqlite.org/sqlar.html
https://www.fossil-scm.org/
https://sqlite.org/sqlar.html
https://sqlite.org/cli.html
https://sqlite.org/cli.html#sqlar
https://sqlite.org/fileformat2.html
http://man.he.net/man3/fopen
http://man.he.net/man3/fread
http://man.he.net/man3/fwrite
https://sqlite.org/fasterthanfs.html


supported databases and to statically
link the SQLite engine in with the client. That way the
client program
can be used standalone with an SQLite data file for testing or for
demonstrations.

Education and Training

Because it is simple to setup and use (installation is trivial: just
copy the sqlite3 or
sqlite3.exe executable to the target machine
and run it) SQLite makes a good database
engine for use in teaching SQL.
Students can easily create as many databases as they like
and can
email databases to the instructor for comments or grading. For more
advanced
students who are interested in studying how an RDBMS is
implemented, the modular and
well-commented and documented SQLite code
can serve as a good basis.

Experimental SQL language extensions

The simple, modular design of SQLite makes it a good platform for
prototyping new,
experimental database language features or ideas.

Situations Where A Client/Server RDBMS May Work Better

Client/Server Applications

If there are many client programs sending SQL to the same database over a network, then
use a client/server database
engine instead of SQLite. SQLite will work over a network
filesystem,
but because of the latency associated with most network filesystems,
performance will not be great. Also, file locking logic is buggy in
many network filesystem
implementations (on both Unix and Windows).
If file locking does not work correctly,
two or
more clients might try to modify the
same part of the same database at the same time,
resulting in corruption. Because this problem results from bugs in
the underlying filesystem
implementation, there is nothing SQLite
can do to prevent it.

A good rule of thumb is to avoid using SQLite
in situations where the same database will be
accessed directly
(without an intervening application server) and simultaneously
from many
computers over a network.

High-volume Websites

SQLite will normally work fine as the database backend to a website.
But if the website is
write-intensive or is so busy that it requires
multiple servers, then consider using an
enterprise-class client/server database engine instead of SQLite.

Very large datasets

An SQLite database is limited in size to 281 terabytes (248 bytes, 256 tibibytes).
And even if it
could handle larger databases, SQLite stores the entire
database in a single disk file and
many filesystems limit the maximum
size of files to something less than this. So if you are
contemplating
databases of this magnitude, you would do well to consider using a
client/server database engine that spreads its content across multiple
disk files, and perhaps
across multiple volumes.

High Concurrency

SQLite supports an unlimited number of simultaneous readers, but it will only allow one writer
at any instant in time.
For many situations, this is not a problem. Writers queue up. Each
application
does its database work quickly and moves on, and no lock lasts for more
than a



few dozen milliseconds. But there are some applications that require
more concurrency, and
those applications may need to seek a different
solution.

Checklist For Choosing The Right Database Engine

1. Is the data separated from the application by a network?
→ choose client/server

Relational database engines act as bandwidth-reducing data filters.
So it is best to keep the
database engine and the data on
the same physical device so that the high-bandwidth
engine-to-disk
link does not have to traverse the network, only the lower-bandwidth
application-to-engine link.

But SQLite is built into the application. So if the data is on a
separate device from the
application, it is required that the higher
bandwidth engine-to-disk link be across the network.
This works, but
it is suboptimal. Hence, it is usually better to select a client/server
database
engine when the data is on a separate device from the
application.

Nota Bene:
In this rule, "application" means the code that issues SQL statements.
If the
"application" is an application server and
if the content resides on the same physical machine
as the application server,
then SQLite might still be appropriate even though the end user is
another network hop away.

2. Many concurrent writers? → choose client/server

If many threads and/or processes need to write the
database at the same instant (and they
cannot queue up and take turns)
then it is best to select a database engine that supports that
capability, which always means a client/server database engine.

SQLite only supports one writer at a time per database file.
But in most cases, a write
transaction only takes milliseconds and
so multiple writers can simply take turns. SQLite will
handle
more write concurrency than many people suspect. Nevertheless,
client/server
database systems, because they have a long-running
server process at hand to coordinate
access, can usually handle far more write concurrency than SQLite ever will.

3. Big data? → choose client/server

If your data will grow to a size that you are uncomfortable
or unable to fit into a single disk
file, then you should select
a solution other than SQLite. SQLite supports databases up to
281
terabytes in size, assuming you can find a disk drive and filesystem
that will support 281-
terabyte files. Even so, when the size of the
content looks like it might creep into the terabyte
range, it would
be good to consider a centralized client/server database.

4. Otherwise → choose SQLite!

For device-local storage with low writer concurrency and less than a
terabyte of content,
SQLite is almost always a better solution. SQLite
is fast and reliable and it requires no
configuration or maintenance.
It keeps things simple. SQLite "just works".


